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W e ’ r e  n o t  ta l k i n g  a b o u t  r o b o t s 
(though it would be cool if we were). Sentient 
humanoid automatons, whether benevolent or 
malevolent, walking and talking amongst us, 
are still science fiction. But some things that 
used to be impossible are now science fact—
like computers that can tell if two disparate 
images are actually showing the same thing or 
that can predict if and when a supercomputer 
will crash. Los Alamos has always excelled at 
data science, and the data-science techniques 
known collectively as machine learning are now 
taking data analysis to the next level. Through 
machine learning, or ML, scientists are exploring 
new ways of answering old questions, and, 
in some instances for the first time, they are 
actually getting some answers.
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Machine learning is a natural product 
of increased computational power. The 
questions aren’t necessarily new, and 
the math isn’t necessarily new. But the 
machines are, and what scientists are 
doing with them certainly is. Enabled by 
major advances in computer hardware 
and software, and by the massive amounts 
of data newly available, tech entities 
from social media companies to national 
laboratories are using and developing ML. 

But while social media and computer 
companies are mostly working on 
problems like targeted marketing, 
virtual assistants, and self-driving cars, 
Los Alamos scientists are working on 
mission-critical science problems like 
nuclear nonproliferation, global security, 
and ensuring the safety, efficacy, and 
reliability of the country’s nuclear arsenal. 
The level of performance required for the 
Laboratory is more stringent owing to the 

high-stakes nature of these challenges. 
What sets the Laboratory apart from other 
entities pushing ML is the intersection 
of problems and solutions found here—
Los Alamos offers leading-edge scientific 
solutions rooted in rich institutional 

knowledge. The broad body of physics expertise that exists at 
the Laboratory, when married to ML, makes new approaches 
to national security possible.

Scientists at the Laboratory are using and developing ML 
in a plethora of ways. Some are going after answers to age-old 
questions, some are asking brand new questions, and some are 
pioneering new ways of doing and thinking about ML itself. By 
no means comprehensive, this article provides several examples 
of machine learning being done at Los Alamos.

What it is and what it isn’t 
ML is not synonymous with artificial 

intelligence (AI). General AI refers to 
learning and reasoning by machines 
without the intervention of humans, 
and most scientists agree that we aren’t 
there yet. ML is a specialized subset of 
AI, wherein a human still writes the 

code, but the output of the code depends on data—usually vast 
amounts of it—that is also chosen and fed to the computer by a 
human. And the computer usually needs to be told, by a human, 
whether or not it is doing the right thing with the data. 

The U.S. Defense Advanced Research Projects Agency 
describes the evolution of AI thus far as having occurred in three 
distinct waves: The first wave, from the 1970s through the 1990s, 
was characterized by computers with the ability to reason—but 
not learn or generalize—as illustrated by IBM’s Deep Blue, the 
chess-playing computer that repeatedly beat the reigning human 
world champion. The second wave, from the 2000s through the 
present, is characterized by computers with the ability to learn and 
perceive—but not to generalize—as illustrated by virtual assistants 
like Apple’s Siri and Microsoft’s Cortana (and others). The third 
wave, mostly still in research labs and not yet producing products 
ready for mass consumption, will likely last for 10–20 years and 
be characterized by computers that can reason, learn, perceive, 

A neural network is a common 
machine learning method 
designed and named after 
biological neuronal systems. 
The mathematical computation 
occurs in the hidden layers, 
which may consist of any 
number of neurons from one to 
hundreds. Similarly, the network 
itself may have anywhere from 
one to hundreds of hidden 
layers between the input and 
output layers.

In a neural network the nodes are 
called neurons, and each neuron has 
learnable parameters: multipliers (w) 
are called weights, and addends (b) 
are called biases. The exact values of 
the weights and biases for each neuron 
are arbitrary at first and become 
progressively more finely tuned 
through the iterative training process.

Machine learning is a natural product of
increased computational power.
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and generalize. A third-wave computer would, for example, be 
able to converse in natural language and explain to a human its 
decision-making process.

So ML is not quite AI, but nor is it simply good programming. 
For example, mobile navigation apps that find the fastest travel 
routes aren’t using ML; they’ve just been intelligently programmed. 
For it to be ML, the machine has to learn an algorithm without 
being explicitly told how. It’s a bit like human toddlers learning to 
walk. They practice a little and learn what works, or even hold a 
parent’s hand, but the parent isn’t saying, “transfer your weight to 
your right leg; bend your left hip, knee, and ankle simultaneously 
to lift your left foot off the ground while keeping your right leg 
straight; move your left leg forward several inches before placing 
your foot, heel first, back on the ground.” And even if the parent 
were saying all that, those instructions would not compute in the 
toddler’s brain. The parent says, “this is walking, now you walk,” 
and the child figures it out. The steps, or algorithm, are internally 
generated—they aren’t specified by the external programmer 
(parent), and when the desired outcome is achieved, the machine 
(toddler) has learned.

With traditional computer programming, data and rules 
go in, and answers come out. With ML, however, there are two 
phases: during the training phase, data and answers go in and 
rules come out; during the inference phase, data goes in and 
predictions come out.

One popular ML method, 
out of many, is the use of a neural 
network. Named after the way 
neurons organize in brains, an ML 
neural network is a mathematical 
model that is organized according to 
an extreme simplification of living 
neural systems. Neural networks 
can be simple, consisting of an 
input layer, output layer, and single 
computing layer in between, or they 
can be complex, or “deep,” with 
many computing layers in between 
the input and output layers. The 
computing layers are called “hidden 
layers” because the user doesn’t 
interact with them, as with the input 
and output layers. As a calculation 
progresses through the layers, the 
resolution becomes finer. Each 
layer of a DNN can learn a different 
concept, so part of the challenge 
for scientists is figuring out the best 
combination and order of layers.

Training a deep neural network (DNN) is just minimizing 
a cost function using a collection of known inputs and outputs 
called a training dataset. Each input goes in, gets worked on by the 
succession of hidden layers, then emerges as some output, which is 
at first not very close to the expected known output. The difference 
between expected output and actual output is the cost, and the 
way to reduce it is to go back to each neuron, or node within 
a hidden layer, and adjust what it does, mathematically, to the 
input it receives. Every neuron has “weights,” by which inputs get 

multiplied, and a “bias” that gets added to the output. The weights 
and biases are the learnable parameters, so their values are arbitrary 
at first and get repeatedly modified through the iterative training 
process. Once the cost function is minimized, meaning all the 
weights and biases are dialed in so that the actual output is as close 
to the expected output as it can get, the model is trained. 

Graphics and schematics
One thing that brains have historically 

done better than computers is vision. 
But brains are helping the computers get 
better. Online reverse-image search tools, 
for example, when provided with a photo, 
can find other instances of the same photo 
or other visually similar photos. And 

when it comes to classification—is this a photo of a dog or a cat?—
ML models are now performing better than humans. But what if 
the image of interest is not a photograph, but a technical drawing, 
like a wiring schematic, blueprint, or data graph? In those 
instances, brains still reign supreme.

For an ML model to assign a photograph to a predefined 
class (e.g., dog vs. cat), the model compares numerical values 
for each pixel to the values of its eight neighboring pixels. But 
unlike photographs, which contain information about color 
and intensity in nearly every pixel, resulting in texture and 

shading throughout the image, technical drawings are line 
drawings that have very little per-pixel information, so standard 
image-classification ML won’t work. Los Alamos ML expert 
Diane Oyen is working on ML models to automate the analysis 
of technical drawings for the Laboratory’s nuclear counter-
proliferation mission.

“Just like ML models for classifying photographs won’t work 
for technical drawings, our ML approach for technical drawings 
wouldn’t work for photos,” says Oyen. “Diagrams have a lot of 
white space, so our models don’t have to go pixel by pixel.” 

Most image-classification ML models work well on images like this one of a jet, but they fail miserably on technical drawings like 
these schematics for a similar aircraft. To a typical adult human brain, it is almost immediately apparent that the two technical 
drawings show the same item from two different angles. Diane Oyen is developing a computer model that will similarly be able to 
determine that the two drawings show the same thing, despite the fact that they have very few lines in common.
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ML photo classifiers fail for technical 
drawings because these models don’t 
retain spatial relationships—a circle inside 
a square is the same as a circle next to a 
square. But Oyen and colleague Liping 
Yang use a graph-based approach that 
preserves these relationships. A graph, 
in this context, is a logical structure 
defined as an ordered pair of a set of 
vertices and a set of edges. How images 
get represented graphically is to first 
define points, edges, and the relationships 
between them, then to organize and 
store this information in a data matrix. 
Oyen and Yang’s method uses non-ML 
classical computer-vision techniques 
to delineate the edges and corners of a 
technical drawing, then a graph-based 
approach to extract the topology—

meaningful spatial relationships within 
the image. In the graph-based approach, 
different model layers do different tasks 
for organizing topological information: 
some layers combine lines and surfaces 
into shapes, such as circles and squares, 
and other layers describe the spatial 
relationships among those shapes. Then 
the extracted topological features are used 
to train a standard DNN to image-match 
the drawing against a collection of 
known drawings.

Because there is so much ML in 
development, a developer doesn’t always 
have to train a new model—he or she can 
use pre-trained models. Taking pre-trained 
models and stringing them together in 
new ways, or modifying them for a new 
purpose is called transfer learning and is 
one of Oyen’s specialties. The main benefit 
of transfer learning is that it shaves off a 
lot of the data and computation needed to 
train the model. DNNs can have millions 
of weights and biases, but those contained 
in the early layers of the model (just after 
input) are very general and affect the 
rough approximation. Therefore only the 
later layers (just before output), where 
more complex features get resolved, need 
to be changed to adapt the model for 
a new use.

Transfer learning is particularly useful for the kind of datasets 
found at the Laboratory. Many ML models get trained with 
internet-scale data, consisting of millions of labeled examples 
(e.g., photos of dogs and cats). But Los Alamos datasets often 
consist of a small number of highly specialized examples, and 
labeling them requires a human expert and a lot of time. Being able 
to transfer what a model has learned on a large, less-specialized 
dataset to a small, highly specialized dataset is invaluable.

So far, Oyen’s model is good at matching replicated images, 
which, Oyen says, has uses beyond national security applications, 
such as detecting plagiarism. In scientific research, careers 
are built on the novelty and ingenuity of data and designs, 
so plagiarism is a high-stakes affair. If, say, a scientist publishes 
a data chart in a research paper, then a screenshot of that chart 
is used in a presentation slide by another scientist, and someone 
photographs the slide during the presentation and posts that 
photo to a social media page, a tool like Oyen’s could connect the 
social media photo to the original research publication and the 
image’s rightful owner.

The way to secure ownership over a new idea or design is to 
obtain a patent. Here too, Oyen’s image-classification tool will 
be of use. If two different scientists have invented highly similar 
items, it’s unlikely that their individual technical drawings will 
be identical. Differences in perspective alone would be enough 
to confound most image-matching computer programs, so 
the images all have to be evaluated by human brains. Pairwise 
comparison of hundreds of thousands of images quickly becomes 
mind-numbingly tedious. Oyen is working to bring semantic 
information into her technical-drawing-classification tool, so that 
it will be able to confirm that two images, which contain the same 
shapes in the same relationship to one another despite differences 
in scale, rotation, occlusion, or perspective, are indeed showing 
the same thing.

Through transfer learning, the model can be adapted for other 
purposes. It can be customized so that subject-matter experts 
can use it without needing an ML expert on hand. This is called 
interactive learning, which is a subfield within transfer learning. 
The model is created from a preexisting model (transfer), but it’s 
built in such a way that the end user can modify it (interactive) 
according to his or her own needs.

“There are two ways to capture domain knowledge, or 
subject-matter expertise, in an ML model,” explains Reid Porter, 
Los Alamos interactive learning expert and a colleague of Oyen. 
“You can either go in and talk to a domain expert, then build 
an ML tool specific to that person’s needs, or you can put the 
ML directly into the domain expert’s hands and let him or her 
customize it by using it.” 

Interactive learning is useful for highly specialized applications 
because it enables general-purpose tools to be fine-tuned on 
the data at hand, which is often limited in quantity. Microscope 

Tech entities from social media companies
to national laboratories are using

and developing machine learning.
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images, satellite images, and time-series data are examples of 
limited, specialized datasets that would be candidates for analysis 
by an interactive learning approach. For a real-world, nuclear 
nonproliferation example, consider the scenario of federal agents 
encountering some sort of radioactive material being transported 
across a border. Samples must be sent to domain experts at 
Los Alamos for determination of the material’s provenance. Every 
sample is unique, so the data are limited, yet confidence is crucial. 
With an interactive ML tool, experts could automate some parts 
of, say, microstructural image analysis, in order to spend more of 
their time on non-automatable conclusions and validation.

Faster output
From its inception over 70 years ago, 

the Laboratory has been a world leader 
in computer simulations of atomistic and 
molecular systems. (“Atomistic” refers to 
the tracking of each atom in a collection 
of atoms, as in a material, in contrast with 
“atomic,” which generally refers to single 

atoms and their substructure.) Predicting how groups of atoms or 
molecules will interact with one another is and has always been 
central to Los Alamos’s mission.

Laboratory physicist Nicholas Lubbers develops physics-
informed ML methods to help materials scientists, chemists, and 
molecular biologists model the chemical and physical properties 
of the atoms and molecules they study. They want to know, for 
example, how a shock wave will propagate through a certain 
kind of metal, or how an enzyme will interact with DNA inside 
a human cell. For these domains, a model has to obey the laws of 
physics, but mainstream DNNs don’t typically include even basic 
physics principles. Lubbers and his colleagues have been working 
to marry the flexibility of ML techniques with the constraints of 

physics. They build DNN architectures that encode exact physics 
properties, such as translation and rotation invariance, as well as 
approximate properties that are found in atomistic systems, such 
as locality. The result is physically valid ML models that are much 
more robust and accurate for large, complex systems.

When it comes to methods for computationally modeling 
the energies of individual atoms, bonds between atoms, clusters 
of atoms, individual molecules, and molecular interactions, 
there tends to be a tradeoff between affordability and accuracy. 
Methods using the equations of classical physics are very 
affordable but are of limited accuracy and lack transferability to 
other domains, while methods using the equations of quantum 
physics are highly accurate and transferable but scale poorly—
quickly becoming cost restrictive as the number of atoms in a 
simulation grows.

The scientists have been using transfer-learning techniques 
to develop best-of-both-worlds solutions. Basically, they train a 
DNN on vast quantities of classically computed approximate data 
to get the model’s basic structure, then retrain the last few layers 
on higher-quality but lower-quantity data generated by the best 
quantum-physics calculations to perfect and polish the model. 
In this way, the model operates with classical cost and quantum 
accuracy, allowing scientists to simulate larger systems over 
longer time scales. If necessary, the ML model can occasionally be 
compared to quantum-mechanical calculations as a sort of spot 
check to ensure accuracy.

When training an ML model, it is possible to overtrain, 
which undermines transferability. For example, if you were 

ML is not quite AI
but it is much more than

good programming.

ML models can be repurposed through retraining. 
Here, the same method that was used for the 
pathogen-drug interaction simulation at left has 
been applied to study the properties of liquid 
aluminum. ML is better than classical computing 
methods at simulating disordered arrangements 
like the atoms or molecules of a liquid at a 
high temperature. CREDIT: Justin Smith/LANL

Nicholas Lubbers and colleagues use ML to accelerate the simulation of various complex systems. This simulation shows an 
experimental drug molecule interacting with a protein from Mycobacterium tuberculosis, the pathogen that causes tuberculosis. 
Some bonds between atoms are flexible, allowing the drug molecule to take different shapes, each of which might interact 
differently with the pathogen protein. Lubbers’ model predicts how much energy it takes for each possible shape to form, 
which tells the drug designers how likely it is that the drug will take that shape when it interacts with the pathogen protein. 
For example, as the right-hand portion of the drug molecule rotates about the indicated carbon-nitrogen bond (torsion angles 
from –180 through +180), thereby changing the molecule’s shape, the energy of that bond also changes. Every atom of the 
pathogen protein and the drug molecule is included in the simulation, which helps drug developers understand how the 
molecules might be expected to interact, thereby helping them assess how effective the drug might be. CREDIT: Justin Smith/LANL
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Better outcome
High-performance computing (HPC) 

simulations are one of the main ways 
that high-quality, high-stakes science 
gets done. And ML, whether physics-
informed or not, can improve the 
reliability and performance of mission-
central HPC simulations themselves. 

 “If the coin is the intersection of high-quality science with 
national security challenges,” explains Laboratory ML expert and 
former Navy research scientist Ben Migliori, “then the two sides 
of that coin, the two ways we can use ML to that end, are, yes, 
embedding the physics in the model when we know the physics of 
the system, but also, when we don’t actually know the physics and 
therefore can’t embed it, understanding how and when it will fail.”

Los Alamos ML expert Lissa Moore is developing methods to 
do just that. Not to be confused with output, which is the answer 
to the question being calculated, the outcome of a simulation is 
whether the simulation itself will run successfully, or if instead the 
system will crash, time out, or otherwise stall before completion. 
These kinds of interruptions increase the time and cost of HPC 
simulation, but preventing them requires knowing about the health 
of the HPC cluster and anticipating abnormal behavior.

An HPC cluster, or supercomputer, is basically 2000 computers 
networked together to do one thing. There are different ways to set 
it up, but no matter how it’s set up, it needs continual monitoring. 

Both hardware—processors, networks, 
memory modules, etc.—and software—
operating systems, user codes, job 
schedulers, etc.—get monitored, which 
generates terabytes of system-health data 
every day. Moore uses ML to take in all 
that data and make sense of it so that 

decisions can be made about if, when, and how a person should 
intervene to optimize the outcome. 

Scientists queue for 12-hour time slots on the Laboratory’s 
HPC clusters, so their codes have to run to completion in that 
time. If the operators who supervise the HPC clusters knew 
in advance that the system was going to crash, they could kill 
a simulation early and restart it, perhaps with enough time to 
complete a re-run. Or, if they knew that the simulation was going 
to time out, the operators could save the data midway, so that 

trying to learn the names of a group 
of people, and each person wore the 
same color shirt many days in a row, 
you may inadvertently learn that “Bob” 
equals “red shirt” and “Barbara” equals 
“yellow shirt.” But what happens when, 
one day, Bob and Barbara are both 
wearing green? This kind of false cue, 
called overfitting, can thwart ML as well, 
resulting in a model that has memorized 
rather than learned, and so is overspe-
cialized and not transferable. The model 
has to incorporate known physics to 
answer known questions, but it also 
has to be transferable in order to get at 
unknown questions.

Whereas ML offers accelerated 
computation for atomistic systems, 
Lubbers’ broader goal is to create models 
and methods that are transferable, so 
that they might be applied across many 
domains. Using transferable models can 
help scientists learn things they didn’t 
know before and predict things they have 
never seen. It can help them define the 
very questions they need to ask.

“The questions one has to ask in 
scientific machine learning are tied to 
the nature of knowledge,” Lubbers says. 
“If the algorithm learns, but the human 
doesn’t, what has really been achieved? 
As we explore what’s possible with 
machine learning, we are also learning 
how to approach a problem so that we 
will gain scientific knowledge as well.”

The questions one has to ask are
tied to the nature of knowledge.

Lissa Moore is developing ML methods to 
improve high-performance computing by 
predicting job timeouts and system failures 
before they occur. In this proof-of-principle 
experiment, the ML tool was given a job 
that was known to have failed after about 
200 minutes. Initially the model predicted 
equivalent likelihoods of completion or failure. 
By about 15 minutes in, nearly three hours 
before the job actually failed, the model began 
predicting a much higher probability of failure 
than success. This work has implications for 
improving the efficiency and reliability of 
supercomputing simulations. 
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Migliori, “no one really knows how brains do it. How we train 
machines is not how we ourselves learn.” 

Neuronal communication works through activity spikes. In 
a brain these spikes are ion-mediated charge fluctuations called 
action potentials, which send neurotransmitters across synapses 
to neighboring neurons. Spiking neurons offer more computing 
power for less electrical power, but most ML uses conventional, 
non-spiking communication schemes. Kenyon, Sornborger, and 
Migliori want to build ML models that operate more like brains, 
and they are all-in on spiking schemes. But spiking schemes don’t 
map well to traditional computer architectures. So the scientists 
are using Loihi (low-EE-hee), a neuromorphic chip made by Intel, 
that directly emulates neural processing and synaptic plasticity 
in the brain by computing with biophysiologically-inspired 
spiking neurons. 

Nearly all ML is supervised learning, meaning that a human 
tells the machine what its task is and when the task has been 
achieved. Brains also do supervised learning, but when they are 
brand new, they learn in an unsupervised way. In unsupervised 
learning, there is no specific task, other than taking in whatever 
data there is to take in and organizing it somehow. Just like 

toddlers learning to walk, human babies learning to see are not 
given stepwise instructions. As they are carried through the 
world with their eyes open and their brains on, they rapidly learn 
that things are different from other things and automatically 
create cognitive categories for all the things. The neurons of the 
baby’s brain self-organize during unsupervised learning into a 
cortex that can process and represent all the incoming sensory 
data. This natural learning (unsupervised) is a prerequisite for 
the brain to be able to make use of the more structured training 
(supervised) the child will receive later, for example, when he or 
she goes to school.

Kenyon and Migliori are using Loihi as an unsupervised 
learning module that learns to represent visual input through 
self-organization. Just like a newborn, Loihi will be carried 
through the world seeing whatever there is to see (through a 
special camera), until it self-assembles all of its neurons into a 
kind of primary visual cortex. 

Kenyon likens it to a digital crow. “Crows are very intelligent,” 
he says. “A Loihi brain with a silicon retina, mounted on a drone, 
could be lightweight, low-power, solar-rechargeable, and fully 
autonomous. That’s what I want to build.”

But to assign a specific task to the digital crow, like “find 
blue cars and squawk when you see one,” requires going back 
to supervised learning. By having done unsupervised learning 
first, the amount of training data needed for subsequent 
supervised training is drastically reduced. But, even though the 
amount of training data is reduced, the ML model still has to 
be “rewarded” and “punished” mathematically as it learns how 
to minimize the cost function. This can’t be done on Loihi in 
the same way it is done on other processors, and that is where 
Sornborger comes in.

when the user re-runs the simulation, it can pick up where it left 
off, rather than starting over and timing out again. 

 “This is important,” says Moore, “because until now we’ve 
had only rudimentary tools looking for known problems. ML can 
look for new problems, ones we haven’t anticipated or seen before. 
The machine learns what normal and healthy looks like, then tries 
to spot any deviation from the norm.”

At present, the learning task is just recognizing potential 
problems. If the model predicts something unusual is going to 
happen, it raises an alert to a human who makes the call as to 
whether or not it is a real problem, and if so, what to do about it. 
The next step will be teaching the model to make that determi-
nation itself, and after that will come teaching it which actions 
to take in certain circumstances. Humans will still be in charge, 
but the ML tool will help them keep HPC simulation as efficient 
as possible.

Independently of her supercomputer-health monitoring work, 
but not unrelated, Moore also works on explainable machine 
learning. Firmly in third-wave AI territory, explainable ML is 
when the model not only makes a decision by itself, but can tell 
the user why it decided what it did. 

What’s going on under the hood of a trained ML model is 
typically not intuitive. Because the hidden layers are hidden 
and the algorithm is not defined by the programmer, the details 
of the mathematics in those layers are a bit of a black box. The 
programmer can learn about the trained model by sort of poking 
at it phenomenologically: vary the input and see what effect it 
has on the output. This is how one might discover that a model 
has learned Bob and Barbara’s shirt colors, rather than their 
faces. But with explainable ML, the model could actually report 
back, “I know this is Bob because of the red shirt he’s wearing,” 
or, “I know this is Bob because I recognize his face.” Being third 
wave, the field of explainable ML is still quite new and still rapidly 
advancing, but the potential is tremendous, offering a new level 
of performance and reliability for HPC simulations and other 
ML applications alike. 

More like life
The Laboratory’s Trinity super-

computer runs on 20 megawatts of 
electricity while the human brain runs 
on about one millionth of that, yet it’s 
unclear which is more powerful.  They 

can do roughly the same number of operations per second but 
they have very different skill sets. 

“Here’s the interesting thing about brains from an ML 
perspective,” explains Los Alamos ML expert Andrew Sornborger, 
“Their main characteristic is that they learn. You send a brain out 
into the world, and it will interact with its environment and learn 
things without explicitly trying.”

“But,” adds Garrett Kenyon, a Laboratory physicist-turned-
neuroscientist who collaborates with both Sornborger and 

A brain out in the world will learn things
without explicitly trying.
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These gains could be as pragmatic as drastically reducing the 
energy consumption of big server farms, as futuristic as the digital 
crow, or as lofty as a fundamental understanding of how our own 
human brains operate.

Making Connections
From solving old problems in new 

ways to finding new problems to solve, 
ML is a leading-edge technology that 
is only going to increase in popularity. 
This omnipresence is a boon to creative 
problem solving, but as different scientists 
across the Laboratory pursue ML to 

various ends, there is a risk of reinventing the wheel. To address 
this risk, a small team of researchers from three divisions across 
the Laboratory have been working for the past two years to 
coalesce what they’ve dubbed a “community of interest” in ML at 
Los Alamos.

“The community of interest consists of people who are 
developing ML as well as people who are interested in learning 
to use it,” says Juston Moore, a Laboratory ML and cybersecurity 
researcher who first proposed the community-building effort. 
“It’s difficult to implement ML in a safe and reliable manner, 
suitable for the Laboratory’s critical national security mission. 
It should be a capability that is distributed across the Lab and a 
tool that is accessible to anyone who needs it. Domain experts 
should be able to vet their ML algorithms using a network of 
connected ML experts.”

“We want to foster institutional knowledge,” elaborates 
Migliori, who is part of the team, “just like the institutional 
physics knowledge we’ve amassed. Ideally we would have ML 
evangelists embedded in each group to help found ML projects.” 

Whereas the Laboratory’s physics expertise has had 70 years 
to amass, ML is a relative newcomer, so Moore, Migliori, and 
their team want to speed things along.

There are hundreds of people across the Laboratory who 
work with or on ML, and the community-of-interest team has 
so far built two main mechanisms to help bring all those people 
together. First, they have launched a seminar series on adversarial 
machine learning—an emerging sub-field that uses competing 
attacker-defender models to strengthen performance—to get 
people into the same room and begin breeding familiarity. 
Second, they have established an internal topical chat service so 
people can converse in real time with ML colleagues, without 
clogging one another’s email inboxes. Both efforts have been well 
received, word is getting around, and the network of ML people 
is solidifying.

There are many more projects that use ML at the Laboratory 
than the ones covered here. From improving cancer diagnosis 
to predicting earthquakes, from power-grid optimization to 
turbulence modeling, machine learning is revolutionizing how 
national security science gets done. 

—Eleanor Hutterer

On a DNN, doling out rewards and 
punishments is the feedback-motivated 
adjustment of weights and biases across the 
network, which is also called backpropa-
gation of error, or simply backpropagation. 
But, until recently, backpropagation 
algorithms had not yet been implemented 
on Loihi, because of its unique, neurally 
based architecture. Brains have all the 
necessary information for changing their 
connections right there where the change 
occurs, at the synapse. Similarly, Loihi, as a 
brain emulator, implements local learning 
rules, where error is addressed right at 
the connection between neurons, rather 
than across the network. Sornborger and 

colleagues have taken a fundamentally 
nonlocal learning rule, backpropagation, 
and figured out how to implement it on 
Loihi, a system that only uses local rules.

“This is what I’m most excited about,” 
says Sornborger, “we’ve had backpropa-
gation algorithms for years, but we didn’t 
have the computers. Then we got the 
neuromorphic processor but couldn’t 
do ML on it. Now that we’ve figured out 
backpropagation on Loihi, very big gains 
stand to be made.” 

The Loihi chip, a 
neuromorphic processor 
introduced by Intel in 
2017, is enabling the 
development of new 
machine learning models 
that emulate learning by 
human brains. The chip 
includes 130,000 neurons 
and 128 cores arranged 
in an architecture that 
is optimized for spiking 
neural network algorithms 
that mimic the electrical 
spiking behavior of 
neurons in human brains.
CREDIT: Intel

How we train machines is
not how we ourselves learn.
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